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Interference of single particles

Ï Wave function ψ(x) ∝ e i kA·x +e i kB·x

Ï Particle density ρ(x) = P (x) ∝ 1+cos
(
kB −kA

) · x

relative phase between paths A and B



Interference of single particles

Ï Of course, one particle does not exhibit

interference.

Ï Each particle independently obeys

a single distribution.

Ï Interference pattern = particle density



Interference of two Bose particles?

Ï Wave function ψ(x1, x2) ∝ e i kA·x1 e i kB·x2 +e i kA·x1 e i kB·x1

Ï Particle density

ρ(x) = 2 · |ψ(x, x)|2 +1 ·
[∫

d x ′ |ψ(x, x ′)|2 −|ψ(x, x)|2
]
= const.



Dirac said

“Each photon then interferes only with itself.

Interference between two different photons

never occurs.”

Is this true?



Dirac said

“Each photon then interferes only with itself.

Interference between two different photons

never occurs.”

Is this true?



Interference between independent laser beams

Magyar and Mandel

Nature 198, 255 (1963)



Interference between two independent BECs

Andrews et al.

Science 275, 637 (1997)



Question

How can we understand the interference

between independent Bose particles?
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Bose particles system

Ï Expansion of the field operator (Schrödinger picture)

Ψ̂(x) =∑
k

âk (t )φk (x , t )

âk (t ) ≡
∫

d 3xφ∗
k (x , t )Ψ̂(x) anihilation operator

Ï With fixed t , “One-particle states” {φk } are orthonormal∫
d 3xφ∗

k (x , t )φk ′(x , t ) = δkk ′

and complete

∑
k
φk (x , t )φ∗

k (x ′, t ) = δ(x ′−x).



Bose particles system

Ï Particle number

N̂ ≡
∫

d 3x Ψ̂†(x)Ψ̂(x) =∑
k

â†
k (t )âk (t ) ≡∑

k
n̂k (t )

Ï Creation and anihilation operators â†
k (t ) and âk (t ) satisfy

[
âk (t ), â†

k (t )
]= δkk ′ ,

âk |{nk }〉 =p
nk |. . . ,nk −1, . . .〉, â†

k |{nk }〉 =
√

nk +1|. . . ,nk +1, . . .〉.

Ï Number basis

|{nk }〉 ≡ |n1,n2, . . . ,nk , . . .〉, n̂k |{nk }〉 = nk |{nk }〉



Non-interacting Bose particles

Ï Hamiltonian

Ĥ0 =− ħ2

2m

∫
d 3x Ψ̂†(x)∇∇∇2Ψ̂(x)+

∫
d 3x V (x)Ψ̂†(x)Ψ̂(x)

Ï Expansion with the solutions of the Schrödinger equation

− ħ2

2m
∇∇∇2φk (x)+V (x)φk (x) = εkφk (x)

Ĥ0 =
∑
k
εk â†

k âk

Ï |{nk }〉 is the energy eigenstate with eigenvalue
∑

k εk nk .



Statistical mechanics of non-interacting Bose particles

Ï Grand canonical distribution (β= 1/kB T )

ρ̂GC =
∞∑

n1,n2,...=0

exp
[−β∑

k (εk −µ)nk
]

Z
|{nk }〉〈{nk }|

Ï Average occupation number (Bose distribution function)

〈n̂k〉=
1

eβ(εk−µ) −1

Ï Chemical potential µ is determined from total particle number

N as ∑
k
〈n̂k〉=

∑
k

1

eβ(εk−µ) −1
= N .



BEC of non-interacting Bose particles

Ï Integral approximation

N =∑
k

1

eβ(εk−µ) −1
≈〈n̂0〉+

∫ ∞

0
dε

D(ε)

eβ(ε−µ) −1

Density of states D(ε) ∝


ε1/2 3D free space

ε2 3D harmonic trap

Ï The second term has finite maximum values in these cases.

⇒ When T < Tc , almost all particles are in the ground mode.

〈n̂0〉∼ N Bose-Einstein condensation

Ï At zero temperature, only the ground mode is occupied.

|N〉0 ≡ |N ,0,0, . . .〉 number state



BEC of weakly interacting Bose particles

Ï Hamiltonian

Ĥ = Ĥ0 + g

2

∫
d 3x Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

g = 4πħ2a

m
a: scattering length

Ï For a dilute gas at zero temperature, the ground state is

|N〉0 ≡ |N ,0,0, . . .〉 number state

and the ground mode is determined by Gross-Pitaevskii

equation

− ħ2

2m
∇∇∇2φ0(x)+V (x)φ0(x)+N g |φ0(x)|2φ0(x) =µ0φ0(x).
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Experimental system

Ï 5×106 Na atoms (repulsive)

trapped in a double-well potential.

Ï Further cooled and BEC occured.

Ï After 40 ms time-of-flight,

observed atomic density by

absorption imaging.

Andrews et al., Science 275, 637 (1997)



Single mode theory — naive calculation

Ï Non-interacting particles, zero temperature.

Ψ̂(x , t ) = âφ(x , t )+ b̂ξ(x , t )

(Heisenberg picture, φ, ξ: solutions of Schrödinger equation)

Ï Average particle density ∝ probability to detect a particle

〈Ψ̂†(x , t )Ψ̂(x , t )〉=〈â†â〉|φ|2 +〈b̂†b̂〉|ξ|2 +〈â〉〈b̂†〉φξ∗+c.c.



Single mode theory — naive calculation

Ï Average particle density ∝ probability to detect a particle

〈Ψ̂†(x , t )Ψ̂(x , t )〉=〈â†â〉|φ|2 +〈b̂†b̂〉|ξ|2 +〈â〉〈b̂†〉φξ∗+c.c.

Ï BEC at zero temperature: number state |N〉

⇒ 〈â〉=〈N |â|N〉 = 0

⇒ 〈Ψ̂†(x , t )Ψ̂(x , t )〉=〈â†â〉|φ(x , t )|2 +〈b̂†b̂〉|ξ(x , t )|2

Ï No interference term!

Ï 〈â〉 6= 0 is required for the interference terms to remain.



Coherent state

Ï If the state is a coherent state,

|α〉 = e−|α|
2/2

∞∑
N=0

αN

p
N !

|N〉,

â|α〉 =α|α〉 ⇒ 〈â〉=α.

〈Ψ̂†(x , t )Ψ̂(x , t )〉= |αφ(x , t )|2+|βξ(x , t )|2+αβ∗φ(x , t )ξ∗(x , t )+c.c.

Ï The interference terms remain.

Ï However, the coherent state contains a superposition of

different number states. In the preparation of two independent

BECs, there is no process that generates such superpositions.



Connection between number state and coherent state

Ï Coherent state satisfies

〈â〉=α= |α|e i argα

⇒ has a well-defined phase argα.

Ï Number state is the superposition over the phase:

|N〉 ∝
∫

dϕ

2π
e−i Nϕ|αe iϕ〉. α: arbitrary

⇒ The phase ϕ is completely random. (U(1) symmetry)



Q&A

Q. What if the particles are exchanged with the environment?

A. Since the particle number in the whole system is conserved,

there is no superpositions.

c1|N〉sys|M〉env + c2|N −1〉sys|M +1〉env

Trenv−−−→ |c1|2|N〉sys〈N |+ |c2|2|N −1〉sys〈N −1|



Q&A

Q. Perhaps the U(1) symmetry is spontaneously broken.

A. Even if the energy expectation value of the state without the

symmetry is low, there is no realistic process to realize such a state.

“... it is neither necessary nor desirable to

introduce the idea of spontaneously broken U(1)

symmetry, ...”

A. J. Leggett



Q&A

Q. You can superpose the particle number difference.

A. Yes. Phase state

1p
2N N !

(
â† +e iϕb̂†)N |0〉 =∑

k

√
N !

k !(N −k)!
|k〉a |N −k〉b

However, this state cannot be prepared independently.

In other words, it is the same situation as the “interference of single

particles.”



How do two number states interferes?
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Interference of single particles

Ï Each particle independently obeys

a single distribution.

Ï Interference pattern

= average particle density



Interference between two independent BECs

Ï A single shot measurement

for a system with a large

number of particles

Ï Interference pattern

6=average particle density

Ï Need to consider backaction

of the measurement.



Measurements induce interference

Javanainen and Yoo, PRL 76, 161 (1996)

Ï Two BECs with wave number k and −k

Ψ̂(x) ∝ âe i kx + b̂e−i kx , |ψ0〉 = |N , N〉

Ï Average particle density

〈ψ0|Ψ̂†(x)Ψ̂(x)|ψ0〉∝〈ψ0|(â†â + b̂†b̂)|ψ0〉= 2N

Ï State after a single particle detection at x1

|ψ1〉 ∝ Ψ̂(x1)|ψ0〉 = e i kx1 |N −1, N〉 +e−i kx1 |N , N −1〉

〈ψ1|Ψ̂†(x)Ψ̂(x)|ψ1〉∝ K0 +K1 cosk(x −x1)



Measurements induce interference

Numerical simulation

Particle number N = 1000

(PRL 76, 161 (1996))

(a) Number state + measurement

(b) Coherent state



Measurements localize the relative phase

Sanders et al., PRA 68, 042329 (2003)

Ï Number state can be expanded with coherent state

|N〉 ∝
∫

dϕ

2π
e−i Nϕ

∣∣∣αe iϕ
〉

Ï State after a single particle detection at x

Ψ̂(x)|N , N〉 ∝
∫

dϕ

2π

∫
dϕ′

2π
C (ϕ,ϕ′)

∣∣∣αe iϕ
〉∣∣∣αe iϕ′〉

C (ϕ,ϕ′) = e−i N (ϕ+ϕ′)
(
e i (ϕ+kx) +e i (ϕ′−kx)

)
|C (ϕ,ϕ′)|2 = 2cos2(ϕ−ϕ′+2kx)



Measurements localize the relative phase

Ï After m particles are detected at the same position x = 0

|C (ϕ,ϕ′)|2m ∝ cos2m(ϕ−ϕ′) ∝ exp

[
−1

4
m(ϕ−ϕ′)2

]
Ï Width of the distribution of the relative phase

∆(ϕ−ϕ′) ∼ 1p
m

→ 0 (m →∞)

|C (ϕ,ϕ′)|2m → δ(ϕ−ϕ′−π/2)+δ(ϕ−ϕ′+π/2)

Ï The relative phase ϕ−ϕ′ is localized around ±π/2.



Interacting case

Paraoanu, PRA 77, 041605R (2008)

Ï With the initial state |N /2, N /2〉, the state is∫
dϕ

2π
|Φϕ(t )〉N , |Φϕ(t )〉N = 1p

N !

[∫
d 3xΦϕ(x , t )Ψ̂†(x)

]N

|0〉,

Φϕ(x , t ): solution of time-dependent GP equation evolved

from initial wave function

Φϕ(x ,0) = 1p
2

[
φ(x)e−iϕ/2 +ξ(x)e iϕ/2

]
.

Ï Similar localization effect can be derived.

Ï The average density itself shows ripples due to the interaction.



Further questions

Ï Measurements induce relative phase localization.

Ï Is there any difference in observed values in the case of the

number state and that of the coherent state?

Ï Is the state change by measurements always necessary to

describe interference?

Ï All observable values are probabilistic variables in quantum

theory. We want to investigate their probabilistic behavior.
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Situation

ξk (x , t ) φk (x , t )

fl (x , t )



Situation

Ψ̂(x , t ) =∑
k

[
âk (t )φk (x , t )+ b̂k (t )ξk (x , t )

]
Ï Expansion with detector modes

Ψ̂(x , t ) =∑
l

d̂l (t ) fl (x , t )

d̂l (t ) =∑
k

[
plk (t )âk (t )+qlk (t )b̂k (t )

]
plk (t ) =

∫
d 3x f ∗

l (x , t )φk (x , t ), qlk (t ) =
∫

d 3x f ∗
l (x , t )ξk (x , t )

Ï Observed particle number

n̂l (t ) = d̂ †
l (t )d̂l (t )



Single mode approximation

Ψ̂(x , t ) = â(t )φ(x , t )+ b̂(t )ξ(x , t )

Ï Expansion with detector modes

Ψ̂(x , t ) =∑
l

d̂l (t ) fl (x , t )

d̂l (t ) = pl (t )â(t )+ql (t )b̂(t )

pl (t ) =
∫

d 3x f ∗
l (x , t )φ(x , t ), ql (t ) =

∫
d 3x f ∗

l (x , t )ξ(x , t )

Ï Observed particle number

n̂l (t ) = d̂ †
l (t )d̂l (t ) = [

p∗
l (t )â†(t )+q∗

l (t )b̂†(t )
][

pl (t )â(t )+ql (t )b̂(t )
]



Why coherent states are compatible with interference

∼
√〈

n̂(x)
〉

Ï Coherent state |pN e iϕa 〉|pN e iϕb 〉
Ï Expectation value 〈n̂l 〉 = N

(|pl |2 +|ql |2 +2Re pl q∗
l e i (ϕa−ϕb )

)
Ï Variance

√〈(
n̂l −〈n̂l 〉

)2
〉
=√

2〈n̂l 〉¿ 〈n̂l 〉 small



Why coherent states are compatible with interference

∼
√〈

n̂(x)
〉

Ï Single-shot measured value has almost definite value.

nl = N
[|pl |2 +|ql |2 +2|pl ||ql |cos(ϕa −ϕb +ϕ)

]+δl ,

ϕ= arg pl q∗
l , 〈δl 〉= 0,

√
〈δ2

l 〉∼
√

〈n̂l 〉¿ 〈n̂l 〉



Number state

∼ 〈
n̂(x)

〉

Ï Number state |N〉|N〉
Ï Expectation value 〈n̂l 〉 =

(|pl |2 +|ql |2
)

N

Ï Variance

√〈(
n̂l −〈n̂l 〉

)2
〉
=

√
2|pl |2|ql |2N 2 +O(N ) ∼ 〈n̂l 〉

large



Number state

∼ 〈
n̂(x)

〉

Even if a single-shot measurement shows interference, the phase of

the interference is random to experiment to experiment.

⇒ The expectation values do not show interference and the

variance is very large.



What should we compare?

Ï Coherent state: Single-shot measurement shows interference

and the phase is definite.

nl = N
[|pl |2 +|ql |2 +2|pl ||ql |cos(ϕa −ϕb +ϕ)

]+δl

ϕ= arg pl q∗
l , 〈δl 〉= 0,

√
〈δ2

l 〉∼
√

〈n̂l 〉¿ 〈n̂l 〉

Ï Relative phase randomized coherent state

ρ̂PRC =
∫

dϕ′

2π
|
p

N e iϕ′〉〈
p

N e iϕ′ |⊗ |
p

N e−iϕ′〉〈
p

N e−iϕ′ |

⇒ ϕ in the above equation becomes a completely random

value ⇒ Single-shot shows interference, expectation does not.



What should we compare?

Ï Compare the probability distribution of observed particle

numbers n̂l in the following two case:

Ï Number state (or mixture of them)

|N〉|M〉
(∑

N
pN |N〉〈N |⊗∑

M
p ′

M |M〉〈M |
)

Ï Relative phase randomized coherent state

ρ̂PRC =
∫

dϕ′

2π
|αe iϕ′〉〈αe iϕ′ |⊗ |βe−iϕ′〉〈βe−iϕ′ |



Correlation functions

Ï Want to calculate correlation functions of measured value n̂l :

〈
n̂t1

1 · · · n̂tM
M

〉
, n̂l =

[
p∗

l â† +q∗
l b̂†][pl â +ql b̂

]
.

Ï Calculation of normal-ordered product average

〈(
â†)s′ âs(b̂†)t−s b̂t−s′

〉∏
l

(
p∗

l

)s′l p sl

l

(
q∗

l

)tl−sl q
tl−s′l
l ,

t =∑
l

tl , s =∑
l

sl , s′ =∑
l

s′l

is sufficient.



Evaluation of correlation functions

Ï Number state (or mixture of them)

〈(
â†)s′ âs(b̂†)t−s b̂t−s′

〉
=

〈(
â†)s âs

〉〈(
b̂†)t−s b̂t−s

〉
δss′

Ï Relative phase randomized coherent state

〈(
â†)s′ âs(b̂†)t−s b̂t−s′

〉
PRC

= (
α∗)s

αs(β∗)t−s
βt−sδss′

Ï Compare the ordinary coherence function〈Ĝs〉=
〈(

â†
)s âs

〉
and(

α∗)s
αs .

Ï Not mutual but self coherence is important.



Number state

Ï For a number state |N〉,

〈Ĝs〉= N !

(N − s)!

Ï With α=p
N ,

(
α∗)s

αs = N s . Therefore

〈Ĝs〉−N s

N s ∼ 1

N
. (s ¿ N )

Ï The difference between these two states is O(1/N ).

Ï With sufficiently large N , these two states are practically

equivalent.



Poissonian distribution

Ï Laser cavity

ρ̂ = e−N
∞∑

N=0

N
N

N !
|N〉〈N | =

∫
dϕ

2π

∣∣∣√N e iϕ
〉〈√

N e iϕ
∣∣∣

Ï With α=
√

N ,
(
α∗)s

αs = N
s
. In this case,

〈Ĝs〉= N
s
.

Ï ρ̂ and the phase randomized coherent state is completely

equivalent.



Grand canonical distribution

Ï Thermal state without condensation

ρ̂ = 1

N +1

∞∑
N=0

(
N

N +1

)N

|N〉〈N |

〈Ĝs〉= s!N
s

Ï With α=
√

N ,
〈Ĝs〉−N

s

N
s = s!−1 ∼ 1

Ï Thermal gas is not coherent.



Finite temperature (multimode) case

n̂l =
∑
k,k ′

(
p∗

l k ′plk â†
k ′ âk +q∗

lk ′qlk b̂†
k ′ b̂k +p∗

l k ′ql k â†
k ′ b̂k +q∗

l k ′plk b̂†
k ′ âk

)

Ï Without condensation

Grand canonical distribution ⇒ populations are statistically

independent ⇒ correlation function factorize ⇒ single mode

theory with grand canonical distribution ⇒ no interference.

Ï With condensation

Typical matrix element for âk (k 6= 0) is small and negligible ⇒
single mode theory with canonical distribution



BEC at finite temperature

Ï BEC at finite temperature obeys the canonical distribution.

Ï Grand canonical average (N , V →∞ with ρ = N /V )

1

V s

〈
N !

(N − s)!

〉
GC

= s!

(〈N〉GC

V

)s

→ s!(ρ−ρc )s

Ï Canonical average is calculated from grand canonical average1

1

V s

〈
N !

(N − s)!

〉
C
= 1

s!

1

V s

〈
N !

(N − s)!

〉
GC

→ (ρ−ρc )s

Ï This exhibits Poissonian-like distribution of the condensate.

1c.f. Ziff et al., Phys. Rep. 32, 169 (1977).



Summary and outlook

Ï We can intuitively understand interference between two

independent BECs with relative phase localization by

measurements.

Ï Alternatively, we can use correlation function analysis to

quantitatively evaluate the interference, including finite

teperature case.

Ï How about interacting case? Can we separate the effect of

initial correlation and that of interaction?
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