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Abstract

When describing quantum interference between independent bosonic fields
under U(1) superselection rule (SSR), it is common to employ states which vi-
olate the SSR. I discuss validity of the use of such states using correlation func-
tions of measured values. It is shown that such states are indeed valid under
some circumstances.

1 Introduction

Interference is one of the most impressive phenomena in quantum theory. In
particular, interference in many-body systems like superconductors or Bose-
Einstein condensates (BECs) of atoms is a macroscopic quantum effect and has
been attracting much interest for years. Interference of light beams from lasers
also is a result of quantum theory when the light fields are treated as quantum
fields. While the first observation of interference fringes between two indepen-
dent laser fields was many years ago [1], those between two independent atomic
BECs had not been observed until recently [2].

When describing such quantum interference, it is common to employ a state
like a coherent state [3], which is a superposition of eigenstates of particle num-
ber, e.g., number of charges in a superconductor, number of atoms in an atomic
BEC and number of photons in a laser field. Since such a state has a nonvanish-
ing mean field value, it is possible to describe interference in the same manner
as in the case of classical fields.

On the other hand, many authors have questioned validity of taking these
states, which violate superselection rules. A superselection rule (SSR) is a rule
forbidding some superposition states. An SSR is usually associated with a cer-
tain symmetry of the system [4]. For example, when the system has a U(1)
symmetry, any state ρ̂ of the system must be invariant under the U(1) action
Û (ϕ) = exp(i n̂ϕ), i.e., Û (ϕ)ρ̂Û †(ϕ) = ρ̂. Thus the state ρ̂ and the particle num-
ber n̂ must commute, which means ρ̂ has no superposition of states with differ-
ent particle numbers. The system of electrons and the system of atoms are both
subject to the U(1)-SSR and superpositions of states with different charges or
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atoms are not permitted. The system of photons also obeys the U(1)-SSR, due
to conservation of energy in quantum optics [4, 5].

To justify the use of coherent states, it is usually claimed that the symmetry
is “spontaneously broken.” However, in general, there is no mechanism which
breaks the symmetry in a real physical system, especially when the whole sys-
tem, consisting of the main system and its environment, is treated as a quantum
system. Therefore it should be explained why two indepedent quantum fields
exhibit interference, even though they have no superpositions and their mean
field values vanish.

Many works have been devoted to this subject. (See, e.g., [4–14] and refer-
ences therein.) It has been emphasized in some of them that back action of mea-
surement to the system must be described explicitly and that entanglements be-
tween subsystems play a crucial role [5]. It has also been suggested that whether
the description of the system with coherent states is valid or not depends on the
choice of reference frames [4]. Although some of these statements capture the
essence, only a few quantitative and analytical theories which justify the use of
coherent states exist. In this note, I show that taking coherent states is indeed
valid by comparing observable quantities in two cases where coherent states or
corresponding mixed states are employed to describe the system. The result
here is quantitative and analytical one, and it provides a firm reason for the use
of coherent states.

2 Coherent states violate U(1)-SSR

Throughout this note, I focus on the case of the U(1)-SSR. Under the U(1)-SSR,
the particle number n̂ is the superselected quantity. A general pure state of the
system

|ψ〉 =
∞∑

n=0
cn |n〉,

∞∑
n=0

|cn |2 = 1, (1)

where |n〉 is some eigenstate of n̂ with the eigenvalue n, violates the SSR unless
the coeffeicients cn are zero for all n other than some specific number m, i.e.,
cn = δnm . In other words, only pure states permitted under the SSR are eigen-
states of n̂.

On the other hand, the pure state (1) has conventionally been utilized as a
“physical” description of the system when discussing interference. Consider
observing interference between two fields â and b̂. As we observe the num-
ber of particles in the superposed fields â + b̂, the interference term is â†b̂ (and
its Hermitian conjugate). Assuming that the two fields are initially independent,
the expectation value of the interference term factorizes, i.e., 〈â†b̂〉=〈â†〉〈b̂〉. If
either of the initial states of the fields does not have superposition of different
number states, the expectation value vanishes. Therefore states violating the
SSR is necessary for a nonvanishing expectation value of the interference term.

However, as long as the SSR exists, there should be a way to describe the
interference with states obeying the SSR. There are two keys to solve this puz-
zle. First, in an interference experiment, one measures multiple quantities on
the single system. For example, if one wants to observe spatial interference in a
system of atomic BECs, one measures values of atomic density at many spatial
positions. In such a situation, one should take into account effect of back action
of the measurements on the system [5, 6, 8, 10] or, alternatively, deal with a joint
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probability of the measurements. The second point is that it is not the expecta-
tion value that one measures in a single experiment. The vanishing expectation
value does not imply that one cannot observe interference. Rather, the interfer-
ence should be seen in the multiple observed values from a single experiment.
If the position of the interference fringes varies from experiment to experiment
and one takes an average of the fringes over experiments, they would be washed
out, which is consistent with the vanishing expectation value [7, 12].

With these points in mind, I discuss in the rest of this note how one can
predict the interference quantitatively. We consider correlation functions of
measured values in experiments, which characterize probability distributions
of them.

3 Correlation functions of particle
numbers

Let us consider a system of two bosonic fields Â and B̂ , which consists of iden-
tical bosons in two orthonormal modes ψ and φ. As usual, Â and B̂ satisfy the
commutation relations of bosons:

[Â, Â†] = [B̂ , B̂†] = 1, [Â, B̂ ] = [Â, B̂†] = 0. (2)

For simplicity, assume there is no interaction between the particles. In exper-
iments we count particle number in multiple distinct modes fl (l = 1, . . . , M).
Note that fl are assumed to be orthonormal since they are mode functions of
distinct detectors. Annihilation operators âl and b̂l which correspond to these
modes are defined by expansion of Â and B̂ as

Âψ=
M∑

l=1
âl fl and B̂φ=

M∑
l=1

b̂l fl . (3)

âl and b̂l are again subject to the commutation relations:

[âl , â†
l ′ ] = [b̂l , b̂†

l ′ ] = δl l ′ , (4)

[âl , âl ′ ] = [b̂l , b̂l ′ ] = [âl , b̂l ′ ] = [âl , b̂†
l ′ ] = 0. (5)

Further assume that all modes orthogonal toψ andφ contain no particles. Thus
all we measure are particle numbers n̂l in superposed fields âl + b̂l :

n̂l =
(
â†

l + b̂†
l

)(
âl + b̂l

)
. (6)

Probability distribution of the measurement value {n̂l } is completely charac-
terized by correlation functions of all orders 〈n̂t1

1 · · · n̂tM
M 〉. Since any product

of annihilation and creation operators can be rearranged as a sum of normal-
ordered products of equal or lower order, we only consider expectation values
of the normal-ordered products

Ĝ = ĜaĜb (7)

=
[

M∏
l=1

(
â†

l

)s′l âsl
l

][
M∏

l=1

(
b̂†

l

)tl−s′l b̂tl−sl
l

]
. (8)
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We assume that the U(1)-SSR is present in the system and that states of the
two fields Â and B̂ are independently prepared. The state of the system is then
written as a tensor product ρ̂⊗σ̂, where ρ̂ and σ̂ both obey the U(1)-SSR. We de-
fine the expectation value of any operator Ô with respect to this tensor product
state as

〈Ô〉SSR = Tr[(ρ̂⊗ σ̂)Ô]. (9)

It is obvious that 〈Ĝ〉SSR factorizes as

〈Ĝ〉SSR = 〈Ĝa〉SSR〈Ĝb〉SSR. (10)

Since ρ̂ and σ̂ are subject to U(1)-SSR, this expectation vanishes unless
∑

l sl =∑
l s′l .

We consider another state assignment, which violates the SSR. Let ρ̂l and σ̂l
be states of fields âl and b̂l which might not obey the SSR. For a single run of
the experiment, the state of the system might be seen as a tensor product

ρ̂1 ⊗·· ·⊗ ρ̂M ⊗ σ̂1 ⊗·· ·⊗ σ̂M . (11)

The expectation value of any operator Ô with respect to this states is defined as

〈Ô〉coh = Tr[(ρ̂1 ⊗·· ·⊗ ρ̂M ⊗ σ̂1 ⊗·· ·⊗ σ̂M )Ô]. (12)

During several runs, relative phase between Â and B̂ can take random values.
Therefore, the overall density operator is written as a mixture∫

dξ

2π
ei∆N̂ξρ̂1 ⊗·· ·⊗ ρ̂M ⊗ σ̂1 ⊗·· ·⊗ σ̂M e−i∆N̂ξ, (13)

where ∆N̂ = ∑
l (â†

l âl − b̂†
l b̂l ) is the particle number difference between Â and

B̂ . The expectation value of Ĝ with respect to this mixture is calculated as

δs,s′
M∏

l=1

〈(
â†

l

)s′l âsl
l

〉
coh

〈(
b̂†

l

)tl−s′l b̂tl−sl
l

〉
coh

, (14)

where s =∑
l sl and s′ =∑

l s′l . Comparing Eqs. (10) and (14), it turns out that if〈
M∏

l=1

(
â†

l

)s′l âsl
l

〉
SSR

= δs,s′
M∏

l=1

〈(
â†

l

)s′l âsl
l

〉
coh

(15)

(and the equivalent expression about Ĝb ) holds for order s up to t , the correla-
tion functions of particle numbers of order up to t have the same values for the
two state assignment ρ̂⊗ σ̂ and Eq. (11).

Since there are no particles in modes orthogonal toψ andφ, the state of field
Â which obeys the SSR can be written as

ρ̂ =
∞∑

N=0
pN |N〉〈N |, (16)

where |N〉 = (Â†)N /
p

N !|0〉 is an eigenstate of the particle number Â† Â with the
eigenvalue N . From Eq. (3), Â can be written in terms of âl as

Â =
M∑

l=1
cl âl =

M∑
l=1

(ψ, fl )âl , (17)
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where (·, ·) denotes the inner product of mode functions. |N〉 can be rewritten
in representation with particle numbers in detector modes as

|N〉 =
p

N !
∑
{nl }∑

l nl =N

M∏
l=1

(c∗l )nl√
nl !

|n1, . . . ,nM 〉. (18)

The expectation value of Ĝa can be evaluated as

〈N |Ĝa |N〉= δs,s′
N !

(N − s)!

M∏
l=1

c
s′l
l (c∗l )sl . (19)

On the other hand, if we take ρ̂l = |αl 〉l〈αl |, 〈Ĝa〉coh can be evaluated as

〈Ĝa〉coh =
M∏

l=1
(α∗

l )slα
s′l
l , (20)

where |αl 〉l is a coherent state

|αl 〉l = e−|αl |2/2
∞∑

nl=0

α
nl
l√
nl !

|nl 〉l . (21)

Fock state In the case of Fock state ρ̂ = |N〉〈N |, we can choose αl = c∗l
p

N .

Note that a product of the coherent states becomes the coherent state |pN〉 of
the entire field Â. Then

δs,s′ 〈Ĝa〉coh = δs,s′ N
s

M∏
l=1

c
s′l
l (c∗l )sl (22)

holds. Correlation functions with order s typically have values of order O(N s ).
Difference between 〈Ĝa〉SSR =〈N |Ĝa |N〉and 〈Ĝa〉coh is

δs,s′
〈Ĝa〉SSR −〈Ĝa〉coh

N s ∼O

(
1

N

)
, (23)

provided s ¿ N . Therefore, with large particle number N , The Fock state de-
scription |N〉 and the coherent state description |pN〉 are practically equiva-
lent.

Poissonian mixed state With a Poissonian mixture, i.e.,

pN = e−N̄ N̄ N

N !
, (24)

where N̄ is the average particle number, we choose αl = c∗l
√

N̄ . In this case,

〈Ĝa〉SSR = δs,s′ 〈Ĝa〉coh. (25)

Thus, the Poissonian mixture of Fock states and the coherent state |
√

N̄〉 are
completely equivalent. This fact is also easily seen from decompositions of ρ̂:

ρ̂ = e−N̄
∞∑

N=0

N̄ N

N !
|N〉〈N | (26)

=
∫

dϕ

2π

∣∣∣√N̄ eiϕ
〉〈√

N̄ eiϕ
∣∣∣. (27)
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Thermal state We take the relevant mode ψ as an excited one-particle state
with energy ε> 0 and chemical potential µ. The particle number distribution of
the thermal state under the inverse temperature β is written as

pN = [1−e−β(ε−µ)]e−β(ε−µ)N = 1

1+N

(
N

1+N

)N

, (28)

where N = [eβ(ε−µ) − 1]−1 is the average particle number. With this thermal
state, the expectation value is

〈Ĝa〉SSR = δs,s′ s!N
s M∏

l=1
c

s′l
l (c∗l )sl . (29)

Taking the coherent state amplitude as αl = c∗l
√

N , The difference between the
two expectation values is

δs,s′
〈Ĝa〉SSR −〈Ĝa〉coh

N
s ∼O(1). (30)

We can thus conclude that for an excited one-particle state, as expected, the
thermal state and corresponding coherent state assignment are significantly dif-
ferent.

The above analyses of single mode systems seem to work well. However,
many realistic thermal systems like atomic BECs would require multi-mode anal-
yses, since such one consists of many one-particle states distributed by a char-
acteristic density of states and all such thermally populated states would affect
the interference visibility. It can still be said that, intuitively, below the criti-
cal temperature of the BEC, the coherent state assignment to the ground mode
would be valid, since the ground mode can be well approximated by the Pois-
sonian mixture with a macroscopic average particle number whereas excited
modes contain much less particles and the contribution of them would be neg-
ligible.
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