Breaking of Gauge Symmetry in Finite Systems

Akira Shimizu

Department of Basic Science，University of Tokyo，Komaba，Tokyo
Collaborator: TAKAYUKi MIYADERA (現: 産総研)

Phase transition：

Theory is well developed for infinite systems．
But，real systems are finite．Not sufficiently understood．
This talk：Breaking of the $\mathrm{U}(1)$ gauge symmetry in finite systems． Bose－Einstein condensate，Superconductor，etc．
－Finite \rightarrow superselection rule
－Macroscopic（Thermodynamical）\rightarrow stability

> What is the vaccuum (or equilibrium) state that is compatible with the superselection rule and the macroscopic stability?

Superselection rule－popular，but misleading versions

- 電荷の異なる状態の重ね合わせは存在しない
- 電荷の異なる状態を重ね合わてはいけない

Popular arguments

Bose－Einstein condensate（BEC）やSuperconductorでは，
－秩序変数 $\hat{\mathcal{O}}$ は，ゲージ不変でない：
－BEC：$\hat{\mathcal{O}}(x)=\hat{\phi}(x)$
－Superconductor：$\hat{\mathcal{O}}(x)=\hat{\psi}_{\uparrow}(x) \hat{\psi}_{\downarrow}(x)$
－superselection ruleにより，Nの定まった状態しか許されない．
－ゆえに $\langle\hat{O}(x)\rangle=0$ であり，spontaneous symmetry breakingはない ．
－しかし，Long－range orderはある：

$$
\left\langle\hat{\mathcal{O}}^{\dagger}(x) \hat{\mathcal{O}}(y)\right\rangle \nrightarrow 0 \text { as }|x-y| \rightarrow \infty \text { spatially. }
$$

－Definite relative phase only when S_{1} and S_{2} are entangled．

－ゆえに，$\langle\hat{\mathcal{O}}(x)\rangle \neq 0 や$ coherent stateを仮定した議論は正しくない．

Questions about the popular arguments

－？？superselection ruleにより，Nの定まった状態しか許されない．
－？？ゆえに $\langle\hat{\mathcal{O}}(x)\rangle=0$ であり，spontaneous symmetry breakingはない．
－？？Definite relative phase only when S_{1} and S_{2} are entangled．
－？？ゆえに，$\langle\hat{\mathcal{O}}(x)\rangle \neq 0 や$ coherent stateを仮定した議論は正しくない． Moreover，
量子論で樣々な状態が可能なとき，macroscopic（thermodynamical）sta－ bilityがある状態を採用すべき！

Nの定まった状態では，macroscopic stability がないのでは？
孤立有限系 vs 表面を通して外界と相互作用する有限系
\rightarrow 熱力学では，どちらも同じ平衡状態が実現すると仮定している
\rightarrow もしも量子論で両者が異なるならば，熱力学と整合するのは後者！

CONTENTS

- Wrong points in the populer arguments.
- Then, what state is realized?
- Time evolution of $|v a c\rangle$.
- Summary and conclusions.

Superselection rule（SSR）－a more precise description
清水明「新版 量子論の基礎」（サイエンス社，2004）p． 68
ある場合には，純粋状態の重ね合わせが，混合状態になることがある ． これを，超選択則がある，と言う。

例えば，$\left|\psi_{1}\right\rangle=$ 電子が1個ある状態，$\left|\psi_{2}\right\rangle=$ 電子が 2 個ある状態とす ると，ゲージ不変な演算子 \hat{A} については，必ず $\left\langle\psi_{1}\right| \hat{A}\left|\psi_{2}\right\rangle=0$ となる。

そのため，ゲージ不変なものだけが可観測量となる＊ような状況では， $\left|\psi_{1}\right\rangle$ と $\left|\psi_{2}\right\rangle$ を重ね合わせた状態は，全ての可観測量に対して干渉項が消 えてしまい，混合状態になる。

「超選択則」という名前から，「そのような重ね合わせが禁止される」 と早とちりされがちであるが，そうではなくて，「重ね合わせても良い のだけれど，$\left\langle\psi_{1}\right| \hat{A}\left|\psi_{2}\right\rangle \neq 0$ であるような可観測量がなければ，混合状態 になりますよ」ということである ．
＊）これは，測定結果がゲージ不変であるべし，という物理的要求を満た すための十分条件である．

Definition of pure and mixed states

Let $\omega(A)$ represent the expectation value of an observable A in a state ω.
Def. ω is called mixed iff there exist ω_{1} and $\omega_{2}\left(\neq \omega_{1}\right)$ s.t.

$$
\omega(A)=\lambda \omega_{1}(A)+(1-\lambda) \omega_{2}(A) \quad(0<\lambda<1)
$$

for every observable A. Otherwise, ω is called pure.

Valid for both quantum and classical states.

Note: The popular definition is

$$
\hat{\rho}^{2} \neq \hat{\rho}: \text { mixed, } \hat{\rho}^{2}=\hat{\rho}: \text { pure }
$$

However, this is rather misleading:

- What observables are considered? (Are they gauge invariant? etc)
- What is the limit of $V \rightarrow \infty$?
- A mixed phase or mixed state in a pure phase?
- On what space $\hat{\rho}$ is defined?

An isolated quantum system that is subject to the SSR

- Look at $\mathrm{S} \equiv \mathrm{S}_{1}+\mathrm{S}_{2}$, and regard the rest as the environment E .
- [size of E$] \gg$ [size of S].
- One will not measure observables in E.
- S_{2} can be (a part of) an apparatus for measuring S_{1}.

Hilbert space : $\mathcal{H}_{\text {tot }}=\underbrace{\mathcal{H}_{1} \otimes \mathcal{H}_{2}}_{\mathcal{H}_{\mathrm{S}}} \otimes \mathcal{H}_{\mathrm{E}}$
Total charge : $\hat{N}_{\text {tot }}=\underbrace{\hat{N}_{1}+\hat{N}_{3}}_{\hat{N}_{\mathrm{S}}}+\hat{N}_{\mathrm{E}}$

$$
\left|N_{k} \ell\right\rangle_{k} \equiv \text { eigenfunction of } \hat{N}_{k} \quad(k=1,2, \mathrm{E})
$$

We show ... AS and T. Miyadera, cond-mat/0102429.

There exist eigenstates $|\Phi\rangle_{\text {tot }}$ of $\hat{N}_{\text {tot }}$ with the following properties:
(i) The density operator $\hat{\rho}_{\mathrm{S}} \equiv \operatorname{Tr}_{\mathrm{E}}\left(|\Phi\rangle_{\text {tot tot }}\langle\Phi|\right)$ satisfies $\hat{\rho}_{\mathrm{S}}^{2} \neq \hat{\rho}_{\mathrm{S}}$. But, $\hat{\rho}_{S}$ is equivalent to a vector state $\left|\Phi_{S}\right\rangle_{\mathrm{S}}\left(\in \mathcal{H}_{\mathrm{S}}\right)$ for any gaugeinvariant observables in S .
(ii) $\left|\Phi_{S}\right\rangle_{S}$ is a product of vector states of S_{1} and S_{2};

$$
\left|\Phi_{S}\right\rangle_{S}=\left|\Phi^{(1)}\right\rangle_{1}\left|\Phi^{(2)}\right\rangle_{2}
$$

where $\left|\Phi^{(k)}\right\rangle_{k}$ is superposition of states with different charges,

$$
\left|\Phi^{(k)}\right\rangle_{k}=\sum_{N_{k}, \ell} C_{N_{k} \ell}^{(k)}\left|N_{k} \ell\right\rangle_{k}
$$

$\rightarrow S_{1}$ and S_{2} are not entangled, but can have definite relative phase!
(iii) To each subsystem S_{k}, one can associate $\left|\Phi^{(k)}\right\rangle_{k}$ and observables which are not necessarily gauge invariant in each subsystem.
(iv) In this association, $\left|\Phi^{(k)}\right\rangle_{k}$ is a pure state.

Proof: a state with such properties

$$
|\Phi\rangle_{\text {tot }}=\sum_{N_{1}, \ell_{1} N_{2}, \ell_{2} \ell} \sum_{N_{1} \ell_{1}} C_{N_{2} \ell_{2}}^{(1)} C_{N_{1}+N_{2} \ell}^{(\mathrm{E})}\left|N_{1} \ell_{1}\right\rangle_{1}\left|N_{2} \ell_{2}\right\rangle_{2}\left|N_{\text {tot }}-N_{1}-N_{2}, \ell\right\rangle_{\mathrm{E}}
$$

- $\sum_{N_{1}, \ell_{1}}\left|C_{N_{1} \ell_{1}}^{(1)}\right|^{2}=\sum_{N_{2}, \ell_{2}}\left|C_{N_{2} \ell_{2}}^{(2)}\right|^{2}=\sum_{\ell}\left|C_{N_{1}+N_{2} \ell}^{(\mathrm{E})}\right|^{2}=1$.
- $C_{N_{1} \ell_{1}}^{(1)} C_{N_{2} \ell_{2}}^{(2)}$ are non-vanishing only when $N_{1}+N_{2} \ll N_{\text {tot }}$. States with low energies would satisfy this condition.

Therefore,

- $|\Phi\rangle_{\text {tot }}$ is an eigenstate of $\hat{N}_{\text {tot }}$.
- For $N_{\mathrm{S}}=N_{1}+N_{2}$,

$$
\begin{aligned}
\operatorname{Prob}\left[N_{\text {tot }}-N_{\mathrm{S}} \text { bosons in } \mathrm{E}\right] \simeq & \text { independent of } N_{\mathrm{S}} \\
& \quad \text { when }\left|N_{\mathrm{S}}-\left\langle N_{\mathrm{S}}\right\rangle\right| \ll \sqrt{\left\langle\delta N_{\mathrm{S}}^{2}\right\rangle .}
\end{aligned}
$$

Natural for a large environment.

Reduced density operator of $S\left(=S_{1}+S_{1}\right)$

For a state $|\Phi\rangle_{\text {tot }}$ of the total system,

$$
\begin{aligned}
& \hat{\rho}_{\mathrm{S}}= \operatorname{Tr}_{\mathrm{E}}\left(|\Phi\rangle_{\text {tot tot }}\langle\Phi|\right) \\
&=\sum_{N_{1}^{\prime}, \ell_{1}^{\prime}} \sum_{N_{2}^{\prime}, \ell_{2}^{\prime}} \sum_{N_{1}, \ell_{1}} \sum_{N_{2}, \ell_{2}} \delta_{N_{1}+N_{2}, N_{1}^{\prime}+N_{2}^{\prime}} \\
& \quad \times C_{N_{1}^{\prime} \ell_{1}^{\prime}}^{(1)} C_{N_{2}^{\prime} \ell_{2}^{\prime}}^{(2)} C_{N_{2} \ell_{2}}^{(2) *} C_{N_{1} \ell_{1}}^{(1) *}\left|N_{1}^{\prime} \ell_{1}^{\prime}\right\rangle_{1}\left|N_{2}^{\prime} \ell_{2}^{\prime}\right\rangle_{2}{ }_{2}\left\langle\left. N_{2} \ell_{2}\right|_{1}\left\langle N_{1} \ell_{1}\right|\right.
\end{aligned}
$$

Except for the trivial case where $\sum_{\ell}\left|C_{N \ell}^{(k)}\right|^{2}=\delta_{N, N_{0}^{(k)}}$, we find

$$
\left(\hat{\rho}_{S}\right)^{2} \neq \hat{\rho}_{S} \quad \rightarrow \text { 'mixed state.' }
$$

But, $\left(\hat{\rho}_{\mathrm{S}}\right)^{2} \neq \hat{\rho}_{\mathrm{S}}$ only ensures that for any vector state $|\Phi\rangle_{\mathrm{S}}\left(\in \mathcal{H}_{\mathrm{S}}\right)$ there exists some operator $\hat{\Xi}_{\mathrm{S}}\left(\right.$ on $\left.\mathcal{H}_{\mathrm{S}}\right)$ for which

$$
\operatorname{Tr}_{S}\left(\hat{\rho}_{S} \hat{\Xi}_{S}\right) \neq{ }_{\mathrm{S}}\langle\Phi| \hat{\Xi}_{S}|\Phi\rangle_{\mathrm{S}}
$$

Such $\hat{\Xi}_{\mathrm{S}}$ is not necessarily gauge-invariant, hence might not be an observable of S.

Proof of (i) and (ii)

One will not measure anything of E .

\rightarrow One measures only observables which take the following form;

$$
\hat{A}_{\mathrm{S}} \otimes \hat{1}_{\mathrm{E}}
$$

\rightarrow This should be gauge-invariant, hence \hat{A}_{S} is gauge-invariant.
$\rightarrow N_{\mathrm{S}}\left(=N_{1}+N_{2}\right)$ is conserved by the operation of \hat{A}_{S};

$$
{ }_{1}\left\langle\left. N_{1} \ell_{1}\right|_{2}\left\langle N_{2} \ell_{2}\right| \hat{A}_{\mathrm{S}} \mid N_{2}^{\prime} \ell_{2}^{\prime}\right\rangle_{2}\left|N_{1}^{\prime} \ell_{1}^{\prime}\right\rangle_{1}=\delta_{N_{1}+N_{2}, N_{1}^{\prime}+N_{2}^{\prime}} A_{N_{1}^{\prime} \ell_{1} N_{2}^{\prime} \ell_{2}^{\prime}}^{N_{1} \ell_{1} N_{2} \ell_{2}}
$$

Hence, for any observable \hat{A}_{S} that will be measured,

$$
\begin{aligned}
& \left\langle A_{\mathrm{S}}\right\rangle=\operatorname{Tr}_{\mathrm{S}}\left(\hat{\rho}_{\mathrm{S}} \hat{A}_{\mathrm{S}}\right) \\
& \quad=\sum_{N_{1}^{\prime}, \ell_{1}^{\prime}} \sum_{N_{2}^{\prime}, \ell_{2}^{\prime}} \sum_{N_{1}, \ell_{1}} \sum_{N_{2}, \ell_{2}} \delta_{N_{1}+N_{2}, N_{1}^{\prime}+N_{2}^{\prime}} C_{N_{1}^{\prime} \ell_{1}}^{(1)} C_{N_{2}^{\prime} \ell_{2}^{\prime}}^{(2)} C_{N_{2} \ell_{2}}^{(2) *} C_{N_{1} \ell_{1}}^{(1) *} A_{N_{1}^{\prime} \ell_{1}^{\prime} N_{2}^{\prime} \ell_{2}^{\prime}}^{N_{1} \ell_{1} N_{2} \ell_{2}} \\
& \left.\quad=\Phi_{\mathrm{S}}\left|\Phi_{\mathrm{S}}\right| \Phi_{\mathrm{S}}\right\rangle_{\mathrm{S}},
\end{aligned}
$$

where

$$
\left|\Phi_{S}\right\rangle_{S}=\left|\Phi^{(1)}\right\rangle_{1}\left|\Phi^{(2)}\right\rangle_{2}, \quad\left|\Phi^{(k)}\right\rangle_{k}=\sum_{N_{k}, \ell} C_{N_{k} \ell}^{(k)}\left|N_{k} \ell\right\rangle_{k}
$$

There exist eigenstates $|\Phi\rangle_{\text {tot }}$ of $\hat{N}_{\text {tot }}$ with the following properties:
(i) The density operator $\hat{\rho}_{\mathrm{S}} \equiv \operatorname{Tr}_{\mathrm{E}}\left(|\Phi\rangle_{\text {tot tot }}\langle\Phi|\right)$ satisfies $\hat{\rho}_{\mathrm{S}}^{2} \neq \hat{\rho}_{\mathrm{S}}$. But, $\hat{\rho}_{S}$ is equivalent to a vector state $\left|\Phi_{S}\right\rangle_{S}\left(\in \mathcal{H}_{S}\right)$ for any gaugeinvariant observables in S .
(ii) $\left|\Phi_{\mathrm{S}}\right\rangle_{\mathrm{S}}$ is a product of vector states of S_{1} and S_{2};

$$
\left|\Phi_{S}\right\rangle_{S}=\left|\Phi^{(1)}\right\rangle_{1}\left|\Phi^{(2)}\right\rangle_{2}
$$

where $\left|\Phi^{(k)}\right\rangle_{k}$ is superposition of states with different charges,

$$
\left|\Phi^{(k)}\right\rangle_{k}=\sum_{N_{k}, \ell} C_{N_{k} \ell}^{(k)}\left|N_{k} \ell\right\rangle_{k}
$$

$\rightarrow S_{1}$ and S_{2} are not entangled, but can have definite relative phase!
(iii) To each subsystem S_{k}, one can associate $\left|\Phi^{(k)}\right\rangle_{k}$ and observables which are not necessarily gauge invariant in each subsystem.
(iv) In this association, $\left|\Phi^{(k)}\right\rangle_{k}$ is a pure state.

Proof of (iii) and (iv)

\hat{A}_{S} should be (a sum of) products of operators of each subsystems;

$$
\hat{A}_{\mathrm{S}}=\hat{A}_{1} \hat{A}_{2} \text { or } \hat{A}_{1} \hat{A}_{1}^{\prime} \text { or } \hat{A}_{2} \hat{A}_{2}^{\prime}
$$

Although \hat{A}_{S} is gauge invariant, each \hat{A}_{k} is not necessarily gauge-invariant.
\rightarrow For $\left|N_{k} \ell_{k}\right\rangle_{k}$ and $\left|N_{k}^{\prime} \ell_{k}^{\prime}\right\rangle_{k}$, there exists \hat{A}_{k} s.t. $k_{k}\left\langle N_{k} \ell_{k}\right| \hat{A}_{k}\left|N_{k}^{\prime} \ell_{k}^{\prime}\right\rangle_{k} \neq 0$
$\rightarrow\left|\Phi^{(k)}\right\rangle_{k}$ is a pure state.

There exist eigenstates $|\Phi\rangle_{\text {tot }}$ of $\hat{N}_{\text {tot }}$ with the following properties:
(i) The density operator $\hat{\rho}_{\mathrm{S}} \equiv \operatorname{Tr}_{\mathrm{E}}\left(|\Phi\rangle_{\text {tot tot }}\langle\Phi|\right)$ satisfies $\hat{\rho}_{\mathrm{S}}^{2} \neq \hat{\rho}_{\mathrm{S}}$. But, $\hat{\rho}_{S}$ is equivalent to a vector state $\left|\Phi_{S}\right\rangle_{S}\left(\in \mathcal{H}_{S}\right)$ for any gaugeinvariant observables in S .
(ii) $\left|\Phi_{\mathrm{S}}\right\rangle_{\mathrm{S}}$ is a product of vector states of S_{1} and S_{2};

$$
\left|\Phi_{S}\right\rangle_{S}=\left|\Phi^{(1)}\right\rangle_{1}\left|\Phi^{(2)}\right\rangle_{2}
$$

where $\left|\Phi^{(k)}\right\rangle_{k}$ is superposition of states with different charges,

$$
\left|\Phi^{(k)}\right\rangle_{k}=\sum_{N_{k}, \ell} C_{N_{k} \ell}^{(k)}\left|N_{k} \ell\right\rangle_{k}
$$

$\rightarrow S_{1}$ and S_{2} are not entangled, but can have definite relative phase!
(iii) To each subsystem S_{k}, one can associate $\left|\Phi^{(k)}\right\rangle_{k}$ and observables which are not necessarily gauge invariant in each subsystem.
(iv) In this association, $\left|\Phi^{(k)}\right\rangle_{k}$ is a pure state.

So, we can play the game as

1. Decompose the system into S_{1}, S_{2} and E :

- S_{2} can be an apparatus for measuring S_{1}.
- You don't look at E.
\rightarrow Observables in $\mathrm{S}\left(=\mathrm{S}_{1}+\mathrm{S}_{2}\right)$ should be gauge-invariant.

2. But, observables in S_{1} (or S_{2}) are not necessarily gauge invariant.
3. To S_{1} and S_{2}, associate $\left|\Phi^{(1)}\right\rangle_{1}$ and $\left|\Phi^{(2)}\right\rangle_{2}$, respectively, which are superpositions of states with different charges.
4. Then,

- $\left|\Phi^{(1)}\right\rangle_{1}$ and $\left|\Phi^{(2)}\right\rangle_{2}$ are pure states.
- The state of S is the product state, $\left|\Phi_{\mathrm{S}}\right\rangle_{\mathrm{S}} \equiv\left|\Phi^{(1)}\right\rangle_{1}\left|\Phi^{(2)}\right\rangle_{2}$.

For each subsystem, non-gauge invariant observables and a pure state which is a superposition of states with different charges.

Note: Decomposition into S_{1} and S_{2} is insufficient. You need $E!\leftarrow$ realistic

Wrong points in the popular arguments

－秩序変数 $\hat{\mathcal{O}}$ は，ゲージ不変でない：
－BEC：$\hat{\mathcal{O}}(x)=\hat{\phi}(x)$
－Superconductor：$\hat{\mathcal{O}}(x)=\hat{\psi}_{\uparrow}(x) \hat{\psi}_{\downarrow}(x)$
－superselection ruleにより，Nの定まった状態しか許されない．
－ゆえに $(\hat{\mathcal{O}}(x))=0$ であり，spontaneous symmetry breakingはない
－しかし，Long－range orderはある：

$$
\left\langle\hat{\mathcal{O}}^{\dagger}(x) \hat{\mathcal{O}}(y)\right\rangle \nrightarrow 0 \text { as }|x-y| \rightarrow \infty \text { spatially. }
$$

－Definite relative phase only when S_{1} and S_{2} are entangled．

$$
J \propto \sin \left(\theta_{1}-\theta_{2}\right)
$$

－？？ゆえに，$\langle\hat{\mathcal{O}}(x)\rangle \neq 0 や$ coherent stateを仮定した議論は正しくない． Then，what state is realized？

Analogy - transverse Ising model of finite size

$$
\hat{H}=-J \sum_{x} \hat{\sigma}_{Z}(x) \hat{\sigma}_{Z}(x+1)-h \sum_{x} \hat{\sigma}_{X}(x)
$$

Order parameter: $\hat{\mathcal{O}}=\sum_{x} \hat{\sigma}_{Z}(x) \quad$ (total magnetization).
For $0<h<{ }^{\exists} h_{c}$, the exact ground state is

$$
\begin{aligned}
|G\rangle & =|\uparrow \uparrow \uparrow \cdots\rangle+|\downarrow \downarrow \downarrow \cdots\rangle+\text { small terms } \\
& =\text { cat state }+ \text { small terms }
\end{aligned}
$$

- Unique
- Has the Z_{2} symmetry
$\rightarrow\langle\hat{\mathcal{O}}\rangle=0$: symmtery is not broken.

But, macroscopically stable vacuum (or equilibrium) state $|v a c\rangle$ should be

$$
|\uparrow \uparrow \uparrow \cdots\rangle \text { or }|\downarrow \downarrow \downarrow \cdots\rangle \quad \text { (ferromagnetic state) }
$$

- Degenerate
- $\langle\hat{\mathcal{O}}\rangle=O(V)$: symmtery is broken.
- $E_{\mathrm{vac}}>E_{\mathrm{G}}$.

One of symmetry-breaking states is realized, although they have higher energies than the exact ground state (which is symmetric).

Why?

Because the latter does not have macroscopic stability.

General case: AS and T. Miyadera, PRL 89 (2002) 270403; BEC: PRL 85 (2000) 688.
A simplified example (with the Z_{2} symmetry):

$$
|G\rangle=|\uparrow \uparrow \uparrow \cdots\rangle+|\downarrow \downarrow \downarrow \cdots\rangle
$$

$$
\begin{gathered}
\text { measurement of } \hat{\sigma}_{Z}(1) \Downarrow \text { unstable } \\
|v a c\rangle=|\uparrow \uparrow \uparrow \cdots\rangle \\
\text { measurement of } \hat{\sigma}_{Z}(1) \Downarrow \text { stable } \\
|v a c\rangle=|\uparrow \uparrow \uparrow \cdots\rangle \\
\text { measurement of } \hat{\sigma}_{X}(1) \Downarrow \text { stable, macroscopically } \\
\mid \text { single-spin excitation on } v a c\rangle=|\rightarrow \uparrow \uparrow \cdots\rangle
\end{gathered}
$$

Theorem (a simplified version): The symmteric ground state with a longrange order is unstable against local measurement of $\hat{\mathcal{O}}(x)$, i.e., does not have macroscopic stability.

Energy is not sufficient to determine the vacuum; stability is important!

Where do you encounter $\boldsymbol{E}_{\mathrm{vac}}>\boldsymbol{E}_{\mathrm{G}}$?

This often occurs, in the absence of a symmetry-breaking field, when

$$
[\hat{H}, \hat{\mathcal{O}}] \neq 0 \quad(\hat{\mathcal{O}}=\text { order parameter })
$$

- Antiferro magnet

$$
\hat{\mathcal{O}}=\sum_{x}(-1)^{x} \hat{\sigma}_{Z}(x) \quad \text { (staggered magnetization). }
$$

A symmetry-breaking field $\vec{h}(x)=(-1)^{x} \vec{h}_{Z}$ is highly artificial.

- $U(1)$ gauge symmetry breaking
- BEC: $\hat{\mathcal{O}}=\int \hat{\phi}(x) d x$
- Superconductor : $\hat{\mathcal{O}}=\int \hat{\psi}_{\uparrow}(x) \hat{\psi}_{\downarrow}(x) d x$
c.f. For simple ferromagnets, $E_{\mathrm{G}}=E_{\mathrm{vac}}$ because

$$
[\hat{H}, \hat{\mathcal{O}}]=0 \text { for } \hat{\mathcal{O}}=\sum_{x} \hat{\sigma}_{Z}(x) .
$$

A symmetry-breaking field $\vec{h}(x)=\vec{h}_{Z}$ is natural.
$E_{v a c}-E_{G}$ for $U(1)$ gauge symmetry breaking systems (for equal $\langle N\rangle$, a unifrom system of large V, with PBC)

$$
\begin{aligned}
& \text { ground state : } \hat{H}|G\rangle=E_{G}|G\rangle, \quad \hat{N}|G\rangle=N|G\rangle \\
& \quad \text { vacuum : } E_{\text {vac }}=\langle\hat{H}\rangle, \quad\langle\hat{N}\rangle=N, \quad \delta N^{2} \equiv\left\langle(\Delta \hat{N})^{2}\right\rangle \neq 0 .
\end{aligned}
$$

Thermodynamics requires

$$
E_{v a c}-E_{G}=o(V) \text { or, more strongly, } E_{v a c}-E_{G}=O(1) ?
$$

cf. For breaking of Z_{2} symmetry (Horsch and von der Linden, 1988);

$$
E_{v a c}-E_{G} \leq O(1 / V)
$$

For short-range interactions (AS and T. Miyadera, PRE 64 (2001) 056121);

$$
E_{v a c}-E_{G} \geq \mu^{\prime} \frac{\delta N^{2}}{2 V}+\frac{o(V)}{V}, \quad \mu^{\prime} \equiv \frac{\partial \mu}{\partial n}=O(1)>0
$$

When $\delta N^{2}=O(\langle\hat{N}\rangle)=O(V)$,

$$
E_{v a c}-E_{G} \geq \text { a positive constant of } O(1)
$$

How was such a strict inequality derived？

Fully quantum mechanical derivation is hard；the best result is

$$
E_{v a c}-E_{G} \leq O(\sqrt{V}) \rightarrow \infty \text { when } \delta N^{2}=O(V)
$$

for a specific model．（T．Koma and H．Tasaki，J．Stat．Phys． 76 （1994）745）
Our inequality is more strict and universal；

$$
\begin{aligned}
E_{v a c}-E_{G} \geq & \mu^{\prime} \frac{\delta N^{2}}{2 V}+\frac{o(V)}{V} \\
& =\text { a positive constant of } O(1) \text { when } \delta N^{2}=O(V)
\end{aligned}
$$

We have utilized quantum mechanics and thermodynamics：

$$
\begin{gathered}
\text { quantum mechanics : } \hat{H}|N, \ell\rangle=E_{N, \ell}|N, \ell\rangle, \quad \hat{N}|N, \ell\rangle=N|N, \ell\rangle, \\
|G\rangle=|N, G\rangle, \quad|v a c\rangle=\sum_{N, \ell} C_{N, \ell}|N, \ell\rangle .
\end{gathered}
$$

thermodyn．extensivity ：$E_{N, \mathrm{G}}=V[\epsilon(N / V)+o(V)] \quad(S \rightarrow 0)$ ， thermodyn．stability ：$\mu^{\prime}(n) \equiv \epsilon^{\prime \prime}(n)=V \frac{\partial^{2}}{\partial N^{2}} E_{N, \mathrm{G}}=O(1)>0$,

Instability of $|G\rangle=|N, G\rangle$

This is the symmteric ground state with a long-range order.
\Downarrow above-mentioned theorem
Does not have macroscopic stability.
Unstable against local measurement of $\hat{\mathcal{O}}(x)=\hat{\phi}(x)$.

$$
J \propto \sin \left(\theta_{1}-\theta_{2}\right)
$$

interference pattern

What state is realized as a vaccum?

Theorem : AS and T. Miyadera, PRL 89 (2002) 270403; Y. Matsuzaki and AS, 2006
A state with the cluster property is stable against any local measurement, i.e., has macroscopic stability.

So, the conditions for the vacuum state are summarized as;

1. Energy is low enough:

$$
E_{v a c}-E_{G}=o(V) \text { or, more strongly, } E_{v a c}-E_{G}=O(1) ?
$$

2. Macroscopic stability (i.e., cluster property).
3. Compatibe with other physical situations of each system.
c.f. Nucleus

Large energy barrier against removing a particle
\rightarrow ground state with fixed N; BCS state is a useful convention

A candidates for a vacuum state for short-range interactions
'Coherent state of interacting bosons'
AS and J. Inoue, PRA 60 (1999) 3204; AS and J. Inoue, JPSJ 71 (2002) 56

$$
|\alpha, G\rangle=e^{-|\alpha|^{2} / 2} \sum_{N=0}^{\infty} \frac{\alpha^{N}}{\sqrt{N!}}|N, G\rangle \quad\left(|\alpha|^{2}=\langle N\rangle\right)
$$

- Symmery is broken: $\langle\hat{\phi}(x)\rangle=\sqrt{Z} \frac{\alpha}{\sqrt{V}}=O(\sqrt{N / V})=O(1)$. ($Z=O(1), 0<Z<1$ for interacting bosons)
- Cluster property
- $\delta N^{2}=\langle\hat{N}\rangle=O(V) \rightarrow E_{\alpha, G}-E_{G}=O(1)$.
- Stable against leakage of particles

Therefore

When particles can flow between subsystems，\leftarrow realistic the coherent state of interacting bosons $\leftarrow|\alpha, G\rangle$ would be realized in each of S_{1} and S_{2}

－［size of E$] \gg$［size of S ］．
－One will not measure observ－ ables in E ．
－S_{2} can be（a part of）an appara－ tus for measuring S_{1} ．
$\bullet \frac{\alpha_{1}}{\sqrt{V_{1}}}=\frac{\alpha_{2}}{\sqrt{V_{2}}}$ at equilibirum．If not，finite current．
－Similar results when $S=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\cdots$ ．
$\langle\hat{\mathcal{O}}(x)\rangle \neq 0$ やcoherent stateを仮定した議論は，coherent state of interact－ ing bosonsに置き換えれば正しくなる！

Superconductors - long-range interactions

If we regard a Cooper pair as a boson, a trivial extension of the short-range case gives (AS, talk presented in 2003)

$$
E_{v a c}-E_{G} \geq \mu^{\prime} \frac{\delta N^{2}}{2 V}+K \frac{\delta N^{2}}{V^{1 / 3}}+\frac{o(V)}{V}
$$

Thermodynamics requires

$$
E_{v a c}-E_{G}=o(V) \text { or, more strongly, } E_{v a c}-E_{G}=O(1) ?
$$

Therefore, for large V,

- $|\alpha, G\rangle$ would not be realized in superconductors, because $\delta N^{2}=O(V)$.
- States with $\delta N^{2} \leq O\left(V^{1 / 3}\right)$ would be realized.
- But, $|N, G\rangle$ is macroscopically unstable (for large V).

Then, what state is realized?

A candidates for a vacuum state for long-range interactions

'Number-phase squeezed state of interacting bosons'
AS and J. Inoue, PRA 60 (1999) 3204; AS and J. Inoue, JPSJ 71 (2002) 56

$$
|N, \zeta, G\rangle=\text { constant } \times \sum_{M=0}^{N} \frac{\zeta^{*(N-M)}}{\sqrt{(N-M)!M!}}|M, G\rangle \quad\left(N-|\zeta|^{2}=\langle N\rangle\right)
$$

If we take $|\zeta|^{2}=O\left(V^{1 / 3}\right)(\rightarrow \infty$ as $V \rightarrow \infty)$, then

- Symmery is broken: $|\langle\hat{\phi}(x)\rangle| \simeq \sqrt{Z} \sqrt{\frac{N}{V}}=O(\sqrt{N / V})=O(1)$.
($Z=O(1), 0<Z<1$ for interacting bosons)
- (Probably) Cluster property.
- $\delta N^{2}=|\zeta|^{2}$.
- For superconductors, $E_{N, \zeta, G}-E_{G}=O(1)$.

When particles can flow between subsystems，\leftarrow realistic

 the number－phase squeezed state of interacting bosons would be realized in each of S_{1} and S_{2}
－［size of E$] \gg$［size of S ］．
－One will not measure observ－ ables in E ．
－S_{2} can be（a part of）an appara－ tus for measuring S_{1} ．

$$
\left|\Phi_{S}\right\rangle_{S}=\left|N_{1}, \zeta_{1}, G\right\rangle_{1}\left|N_{2}, \zeta_{2}, G\right\rangle_{2}
$$

Similar results when $S=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\cdots$ ．
$\langle\hat{\mathcal{O}}(x)\rangle \neq 0$ やcoherent stateを仮定した議論は，number－phase squeezed state of interacting bosonsに置き換えれば正しくなる！

Different states are realized under different conditions

- Small superconductor

Large energy barrier against changing N
\rightarrow ground state with a fixed N is stable and realized

- etc.

So far, so good but!!!

In inifinite systems, a vacuum is assumed to be time-independent.
In finite systems,

- $|N, G\rangle$: eigenstate of $\hat{H} \rightarrow$ no time evalution if perturbation is absent. But, discarded because macroscopically unstable.
- $|\alpha, G\rangle$: would be realized because macroscopically stable. But, not eigenstate of $\hat{H} \rightarrow$ time evolution even if perturbation is absent!

How can $|\alpha, G\rangle$ be consistent with

- a vacuum of infinite systems?
- thermodynamics, where the equilibrium state is time-independent?

AS and T. Miyadera, PRE 64 (2001) 056121

Although $t_{\text {clps }}$ would be finite for finite V, it is sufficient that

$$
t_{\mathrm{clps}} \rightarrow \infty \text { as } V \rightarrow \infty
$$

However, a naive calculation gives;

$$
\begin{aligned}
& |\alpha, G\rangle=e^{-|\alpha|^{2} / 2} \sum_{N=0}^{\infty} \frac{\alpha^{N}}{\sqrt{N!}}|N, G\rangle \Rightarrow \delta N=\langle N\rangle \\
& E_{N+\delta N, G}-E_{N, G}=\mu \delta N+\mu^{\prime} \frac{(\delta N)^{2}}{2 V}+\cdots \\
& \Rightarrow t_{\mathrm{clps}}^{\mathrm{wf}} \sim 1 / \mu \delta N=1 / O(N) \rightarrow 0 ? ? ?
\end{aligned}
$$

However, the factor $\mu \delta N$ can be absorbed into

$$
\alpha \rightarrow \alpha e^{-i \mu t} \Rightarrow \text { Josephson effect }
$$

If interaction were absent, this solves the problem (well known).
However, $\mu^{\prime}>0$ because of interactions, so

$$
t_{\mathrm{clps}}^{\mathrm{wf} \prime} \sim V / \mu^{\prime}(\delta N)^{2}=O(V / N)=O(1)
$$

The wavefunction collapses in such a short time!!

However, this does not necessarily mean that expectation values of observables of interest alter in this time scale.

For an observable that is proportional to a field operator,

$$
t_{\mathrm{clps}}^{\mathrm{obs}} \sim V /\left(\mu^{\prime} \delta N\right)=O(\sqrt{V}) \rightarrow \infty
$$

For an observable that is a polynomial of degree M of field operators,

$$
t_{\mathrm{clps}}^{\mathrm{obs}}=O(\sqrt{V} / M) .
$$

Therefore, if M is independent of V,

$$
t_{\mathrm{clps}}^{\mathrm{obs}}=O(\sqrt{V}) \rightarrow \infty
$$

Consistent with

- a vacuum of infinite systems.
- thermodynamics, where the equilibrium state is time-independent.

Summary and Conclusions

- By considering the environment, we can associate a pure state and nongauge invariant observables to each subsystem.
- A vacuum state of a finite system is not necessarily the ground state.
- The conditions for the vacuum state are

1. Energy is low enough:

$$
E_{v a c}-E_{G}=o(V) \text { or, more strongly, } E_{v a c}-E_{G}=O(1) ?
$$

2. Macroscopic stability (i.e., cluster property).
3. Compatibe with other physical situations of each system.

- Candidates for the realized vacua, for short-range interactions and for longrange interactions.
- When $|v a c\rangle \neq|G\rangle$, the state vector $|v a c\rangle$ evolves quickly.
- However, if we look only at observables that are low-order polynomials of field operators, their expactation values evolve slowly enough.

