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Phase transition:
Theory is well developed for infinite systems.
But, real systems are finite. Not sufficiently understood.

This talk: Breaking of the U(1) gauge symmetry in finite systems.
Bose-Einstein condensate, Superconductor, etc.

• Finite → superselection rule

• Macroscopic (Thermodynamical) → stability
¶ ³
What is the vaccuum (or equilibrium) state that is compatible with the
superselection rule and the macroscopic stability?µ ´



Superselection rule — popular, but misleading versions

•電荷の異なる状態の重ね合わせは存在しない
•電荷の異なる状態を重ね合わてはいけない



Popular arguments

Bose-Einstein condensate (BEC)やSuperconductorでは、

•秩序変数Ôは、ゲージ不変でない：
– BEC: Ô(x) = φ̂(x)

– Superconductor : Ô(x) = ψ̂↑(x)ψ̂↓(x)

• superselection ruleにより、Nの定まった状態しか許されない．

•ゆえに〈Ô(x)〉 = 0 であり、spontaneous symmetry breakingはない．

•しかし、Long-range orderはある：

〈Ô†(x)Ô(y)〉 6→ 0 as |x − y| → ∞ spatially.

• Definite relative phase only when S1 and S2 are entangled.

S1 S2 J ∝ sin (θ1 − θ2)

•ゆえに、〈Ô(x)〉 6= 0やcoherent stateを仮定した議論は正しくない．



Questions about the popular arguments

• ?? superselection ruleにより、Nの定まった状態しか許されない．

• ?? ゆえに〈Ô(x)〉 = 0 であり、spontaneous symmetry breakingはない．

• ?? Definite relative phase only when S1 and S2 are entangled.

• ?? ゆえに、〈Ô(x)〉 6= 0やcoherent stateを仮定した議論は正しくない．

Moreover,¶ ³
量子論で様々な状態が可能なとき、macroscopic (thermodynamical) sta-
bilityがある状態を採用すべき！µ ´

Nの定まった状態では、macroscopic stability がないのでは？

孤立有限系 vs 表面を通して外界と相互作用する有限系
→熱力学では、どちらも同じ平衡状態が実現すると仮定している
→もしも量子論で両者が異なるならば、熱力学と整合するのは後者！



CONTENTS

• Wrong points in the populer arguments.

• Then, what state is realized?

• Time evolution of |vac〉.
• Summary and conclusions.



Superselection rule (SSR) — a more precise description

清水明「新版 量子論の基礎」（サイエンス社, 2004) p.68

　ある場合には，純粋状態の重ね合わせが，混合状態になることがある．
これを，超選択則がある，と言う．
　例えば，|ψ1〉 = 電子が１個ある状態，|ψ2〉 =電子が２個ある状態とす
ると，ゲージ不変な演算子Âについては，必ず〈ψ1|Â|ψ2〉 = 0となる．
　そのため，ゲージ不変なものだけが可観測量となる∗ ような状況では，
|ψ1〉と |ψ2〉を重ね合わせた状態は，全ての可観測量に対して干渉項が消
えてしまい，混合状態になる．
　「超選択則」という名前から，「そのような重ね合わせが禁止される」
と早とちりされがちであるが，そうではなくて，「重ね合わせても良い
のだけれど，〈ψ1|Â|ψ2〉 6= 0であるような可観測量がなければ，混合状態
になりますよ」ということである．

∗) これは，測定結果がゲージ不変であるべし，という物理的要求を満た
すための十分条件である．



Definition of pure and mixed states

Let ω(A) represent the expectation value of an observable A in a state ω.
¶ ³
Def. ω is called mixed iff there exist ω1 and ω2 ( 6= ω1) s.t.

ω(A) = λ ω1(A) + (1 − λ) ω2(A) (0 < λ < 1)

for every observable A. Otherwise, ω is called pure.µ ´
Valid for both quantum and classical states.

Note: The popular definition is

ρ̂2 6= ρ̂ : mixed, ρ̂2 = ρ̂ : pure.

However, this is rather misleading:

• What observables are considered? (Are they gauge invariant? etc)

• What is the limit of V → ∞?

• A mixed phase or mixed state in a pure phase?

• On what space ρ̂ is defined?



An isolated quantum system that is subject to the SSR

S1
S2

E

• Look at S ≡ S1 +S2, and regard
the rest as the environment E.

• [size of E] À [size of S].

• One will not measure observ-
ables in E.

• S2 can be (a part of) an appara-
tus for measuring S1.

Hilbert space : Htot = H1 ⊗H2︸ ︷︷ ︸⊗HE

HS

Total charge : N̂tot = N̂1 + N̂2︸ ︷︷ ︸ +N̂E

N̂S

|Nk `〉k ≡ eigenfunction of N̂k (k = 1, 2, E)



We show ... AS and T. Miyadera, cond-mat/0102429.¶ ³
There exist eigenstates |Φ〉tot of N̂tot with the following properties:

(i) The density operator ρ̂S ≡ TrE (|Φ〉tot tot〈Φ|) satisfies ρ̂2
S 6= ρ̂S.

But, ρ̂S is equivalent to a vector state |ΦS〉S (∈ HS) for any gauge-
invariant observables in S.

(ii) |ΦS〉S is a product of vector states of S1 and S2;

|ΦS〉S = |Φ(1)〉1|Φ(2)〉2,

where |Φ(k)〉k is superposition of states with different charges,

|Φ(k)〉k =
∑
Nk, `

C
(k)
Nk`

|Nk`〉k.

→ S1 and S2 are not entangled, but can have definite relative phase!

(iii) To each subsystem Sk, one can associate |Φ(k)〉k and observables which
are not necessarily gauge invariant in each subsystem.

(iv) In this association, |Φ(k)〉k is a pure state.µ ´



Proof: a state with such properties

|Φ〉tot =
∑
N1,`1

∑
N2,`2

∑
`

C
(1)
N1`1

C
(2)
N2`2

C
(E)
N1+N2`

|N1`1〉1|N2`2〉2|Ntot − N1 − N2, `〉E

•
∑
N1,`1

∣∣∣C(1)
N1`1

∣∣∣2 =
∑
N2,`2

∣∣∣C(2)
N2`2

∣∣∣2 =
∑
`

∣∣∣C(E)
N1+N2`

∣∣∣2 = 1.

• C
(1)
N1`1

C
(2)
N2`2

are non-vanishing only when N1 + N2 ¿ Ntot.

States with low energies would satisfy this condition.

Therefore,

• |Φ〉tot is an eigenstate of N̂tot.

• For NS = N1 + N2,

Prob[Ntot − NS bosons in E] ' independent of NS

when |NS − 〈NS〉| ¿
√
〈δN2

S〉.
Natural for a large environment.



Reduced density operator of S (=S1+S1)

For a state |Φ〉tot of the total system,

ρ̂S = TrE (|Φ〉tot tot〈Φ|)
=

∑
N ′

1,`
′
1

∑
N ′

2,`
′
2

∑
N1,`1

∑
N2,`2

δN1+N2, N ′
1+N ′

2

× C
(1)
N ′

1`
′
1
C

(2)
N ′

2`
′
2
C

(2)∗
N2`2

C
(1)∗
N1`1

|N ′
1`
′
1〉1|N

′
2`
′
2〉2 2〈N2`2|1〈N1`1|

Except for the trivial case where
∑

` |C
(k)
N`|

2 = δ
N,N

(k)
0

, we find

(ρ̂S)2 6= ρ̂S → ‘mixed state.’

But, (ρ̂S)2 6= ρ̂S only ensures that for any vector state |Φ〉S (∈ HS) there
exists some operator Ξ̂S (on HS) for which

TrS

(
ρ̂SΞ̂S

)
6= S〈Φ|Ξ̂S|Φ〉S.

Such Ξ̂S is not necessarily gauge-invariant, hence might not be an observable
of S.



Proof of (i) and (ii)

One will not measure anything of E.
→ One measures only observables which take the following form;

ÂS ⊗ 1̂E.

→ This should be gauge-invariant, hence ÂS is gauge-invariant.
→ NS (= N1 + N2) is conserved by the operation of ÂS;

1〈N1`1|2〈N2`2| ÂS |N ′
2`
′
2〉2|N

′
1`
′
1〉1 = δN1+N2,N

′
1+N ′

2
A

N1`1N2`2
N ′

1`
′
1N

′
2`
′
2
.

Hence, for any observable ÂS that will be measured,

〈AS〉 = TrS

(
ρ̂SÂS

)
=

∑
N ′

1,`
′
1

∑
N ′

2,`
′
2

∑
N1,`1

∑
N2,`2

δN1+N2,N
′
1+N ′

2
C

(1)
N ′

1`
′
1
C

(2)
N ′

2`
′
2
C

(2)∗
N2`2

C
(1)∗
N1`1

A
N1`1N2`2
N ′

1`
′
1N

′
2`
′
2

= S〈ΦS|ÂS|ΦS〉S,
where

|ΦS〉S = |Φ(1)〉1|Φ(2)〉2, |Φ(k)〉k =
∑
Nk, `

C
(k)
Nk`

|Nk`〉k. ¥



AS and T. Miyadera, cond-mat/0102429.¶ ³
There exist eigenstates |Φ〉tot of N̂tot with the following properties:

(i) The density operator ρ̂S ≡ TrE (|Φ〉tot tot〈Φ|) satisfies ρ̂2
S 6= ρ̂S.

But, ρ̂S is equivalent to a vector state |ΦS〉S (∈ HS) for any gauge-
invariant observables in S.

(ii) |ΦS〉S is a product of vector states of S1 and S2;

|ΦS〉S = |Φ(1)〉1|Φ(2)〉2,

where |Φ(k)〉k is superposition of states with different charges,

|Φ(k)〉k =
∑
Nk, `

C
(k)
Nk`

|Nk`〉k.

→ S1 and S2 are not entangled, but can have definite relative phase!

(iii) To each subsystem Sk, one can associate |Φ(k)〉k and observables which
are not necessarily gauge invariant in each subsystem.

(iv) In this association, |Φ(k)〉k is a pure state.µ ´



Proof of (iii) and (iv)

ÂS should be (a sum of) products of operators of each subsystems;

ÂS = Â1Â2 or Â1Â
′
1 or Â2Â

′
2

S1
S2

E

Â1
Â2

Although ÂS is gauge invariant, each Âk is not necessarily gauge-invariant.
→ For |Nk`k〉k and |N ′

k`
′
k〉k, there exists Âk s.t. k〈Nk`k| Âk |N ′

k`
′
k〉k 6= 0

→ |Φ(k)〉k is a pure state.
¥



AS and T. Miyadera, cond-mat/0102429.¶ ³
There exist eigenstates |Φ〉tot of N̂tot with the following properties:

(i) The density operator ρ̂S ≡ TrE (|Φ〉tot tot〈Φ|) satisfies ρ̂2
S 6= ρ̂S.

But, ρ̂S is equivalent to a vector state |ΦS〉S (∈ HS) for any gauge-
invariant observables in S.

(ii) |ΦS〉S is a product of vector states of S1 and S2;

|ΦS〉S = |Φ(1)〉1|Φ(2)〉2,

where |Φ(k)〉k is superposition of states with different charges,

|Φ(k)〉k =
∑
Nk, `

C
(k)
Nk`

|Nk`〉k.

→ S1 and S2 are not entangled, but can have definite relative phase!

(iii) To each subsystem Sk, one can associate |Φ(k)〉k and observables which
are not necessarily gauge invariant in each subsystem.

(iv) In this association, |Φ(k)〉k is a pure state.µ ´



So, we can play the game as ....

1. Decompose the system into S1, S2 and E:

• S2 can be an apparatus for measuring S1.

• You don’t look at E.

→ Observables in S (=S1+S2) should be gauge-invariant.

2. But, observables in S1 (or S2) are not necessarily gauge invariant.

3. To S1 and S2, associate |Φ(1)〉1 and |Φ(2)〉2, respectively, which are super-
positions of states with different charges.

4. Then,

• |Φ(1)〉1 and |Φ(2)〉2 are pure states.

• The state of S is the product state, |ΦS〉S ≡ |Φ(1)〉1|Φ(2)〉2.
¶ ³
For each subsystem, non-gauge invariant observables and a pure state which
is a superposition of states with different charges.µ ´

Note: Decomposition into S1 and S2 is insufficient. You need E! ← realistic



Wrong points in the popular arguments

•秩序変数Ôは、ゲージ不変でない：
– BEC: Ô(x) = φ̂(x)

– Superconductor : Ô(x) = ψ̂↑(x)ψ̂↓(x)

• superselection ruleにより、Nの定まった状態しか許されない．

•ゆえに〈Ô(x)〉 = 0 であり、spontaneous symmetry breakingはない.

•しかし、Long-range orderはある：

〈Ô†(x)Ô(y)〉 6→ 0 as |x − y| → ∞ spatially.

• Definite relative phase only when S1 and S2 are entangled.

S1 S2 J ∝ sin (θ1 − θ2)

• ?? ゆえに、〈Ô(x)〉 6= 0や coherent stateを仮定した議論は正しくない．

Then, what state is realized?



Analogy — transverse Ising model of finite size

Ĥ = −J
∑
x

σ̂Z(x)σ̂Z(x + 1) − h
∑
x

σ̂X(x)

Order parameter: Ô =
∑
x

σ̂Z(x) (total magnetization).

For 0 < h < ∃hc, the exact ground state is

|G〉 = | ↑↑↑ · · · 〉 + | ↓↓↓ · · · 〉 + small terms

= cat state + small terms

• Unique

• Has the Z2 symmetry

→ 〈Ô〉 = 0 : symmtery is not broken.



But, macroscopically stable vacuum (or equilibrium) state |vac〉 should be

| ↑↑↑ · · · 〉 or | ↓↓↓ · · · 〉 (ferromagnetic state)

• Degenerate

• 〈Ô〉 = O(V ) : symmtery is broken.

• Evac > EG.

¶ ³
One of symmetry-breaking states is realized, although they have higher en-
ergies than the exact ground state (which is symmetric).µ ´

Why?



Because the latter does not have macroscopic stability.
General case: AS and T. Miyadera, PRL 89 (2002) 270403; BEC: PRL 85 (2000) 688.

A simplified example (with the Z2 symmetry):

|G〉 = | ↑↑↑ · · · 〉 + | ↓↓↓ · · · 〉
measurement of σ̂Z(1) ⇓ unstable

|vac〉 = | ↑↑↑ · · · 〉
measurement of σ̂Z(1) ⇓ stable

|vac〉 = | ↑↑↑ · · · 〉
measurement of σ̂X(1) ⇓ stable, macroscopically

|single-spin excitation on vac〉 = |→↑↑ · · · 〉
¶ ³
Theorem (a simplified version): The symmteric ground state with a long-
range order is unstable against local measurement of Ô(x), i.e., does not
have macroscopic stability.µ ´¶ ³
Energy is not sufficient to determine the vacuum; stability is important!µ ´



Where do you encounter Evac > EG?
¶ ³
This often occurs, in the absence of a symmetry-breaking field, when

[Ĥ, Ô] 6= 0 (Ô = order parameter).µ ´
• Antiferro magnet

Ô =
∑
x

(−1)xσ̂Z(x) (staggered magnetization).

A symmetry-breaking field ~h(x) = (−1)x~hZ is highly artificial.

• U(1) gauge symmetry breaking

– BEC: Ô =
∫

φ̂(x)dx

– Superconductor : Ô =
∫

ψ̂↑(x)ψ̂↓(x)dx

c.f. For simple ferromagnets, EG = Evac because

[Ĥ, Ô] = 0 for Ô =
∑
x

σ̂Z(x).

A symmetry-breaking field ~h(x) = ~hZ is natural.



Evac − EG for U(1) gauge symmetry breaking systems
(for equal 〈N〉, a unifrom system of large V , with PBC)

ground state : Ĥ|G〉 = EG|G〉, N̂ |G〉 = N |G〉.
vacuum : Evac = 〈Ĥ〉, 〈N̂〉 = N, δN2 ≡ 〈(∆N̂)2〉 6= 0.

Thermodynamics requires

Evac − EG = o(V ) or, more strongly, Evac − EG = O(1)?

cf. For breaking of Z2 symmetry (Horsch and von der Linden, 1988);

Evac − EG ≤ O(1/V ).

For short-range interactions (AS and T. Miyadera, PRE 64 (2001) 056121);

Evac − EG ≥ µ′
δN2

2V
+

o(V )

V
, µ′ ≡ ∂µ

∂n
= O(1) > 0.

When δN2 = O(〈N̂〉) = O(V ),

Evac − EG ≥ a positive constant of O(1).



How was such a strict inequality derived?

Fully quantum mechanical derivation is hard; the best result is

Evac − EG ≤O(
√

V ) → ∞ when δN2 = O(V ),

for a specific model. (T. Koma and H. Tasaki, J. Stat. Phys. 76 (1994) 745)

Our inequality is more strict and universal;

Evac − EG ≥ µ′
δN2

2V
+

o(V )

V
= a positive constant of O(1) when δN2 = O(V ).

We have utilized quantum mechanics and thermodynamics:

quantum mechanics : Ĥ|N, `〉 = EN,`|N, `〉, N̂ |N, `〉 = N |N, `〉,
|G〉 = |N,G〉, |vac〉 =

∑
N,`

CN,`|N, `〉.

thermodyn. extensivity : EN,G = V [ε(N/V ) + o(V )] (S → 0),

thermodyn. stability : µ′(n) ≡ ε′′(n) = V
∂2

∂N2
EN,G = O(1) > 0,

Such powers of thermodynammics are stressed in 清水「熱力学の基礎」(東大出版会)



Instability of |G〉 = |N, G〉

This is the symmteric ground state with a long-range order.

⇓ above-mentioned theorem

Does not have macroscopic stability.
Unstable against local measurement of Ô(x) = φ̂(x).

S1 S2 J ∝ sin (θ1 − θ2)

interference pattern



What state is realized as a vaccum?
¶ ³
Theorem : AS and T. Miyadera, PRL 89 (2002) 270403; Y. Matsuzaki and AS, 2006

A state with the cluster property is stable against any local measurement,
i.e., has macroscopic stability.µ ´

So, the conditions for the vacuum state are summarized as;¶ ³
1. Energy is low enough:

Evac − EG = o(V ) or, more strongly, Evac − EG = O(1)?

2. Macroscopic stability (i.e., cluster property).

3. Compatibe with other physical situations of each system.µ ´

c.f. Nucleus
Large energy barrier against removing a particle
→ ground state with fixed N ; BCS state is a useful convention



A candidates for a vacuum state for short-range interactions

‘Coherent state of interacting bosons’
AS and J. Inoue, PRA 60 (1999) 3204; AS and J. Inoue, JPSJ 71 (2002) 56

|α,G〉 = e−|α|2/2
∞∑

N=0

αN
√

N !
|N,G〉 (|α|2 = 〈N〉)

• Symmery is broken: 〈φ̂(x)〉 =
√

Z
α√
V

= O
(√

N/V
)

= O(1).

(Z = O(1), 0 < Z < 1 for interacting bosons)

• Cluster property

• δN2 = 〈N̂〉 = O(V ) → Eα,G − EG = O(1).

• Stable against leakage of particles

Therefore .....



When particles can flow between subsystems, ← realistic
the coherent state of interacting bosons ← |α,G〉

would be realized in each of S1 and S2

S1
S2

E

• [size of E] À [size of S].

• One will not measure observ-
ables in E.

• S2 can be (a part of) an appara-
tus for measuring S1.

|ΦS〉S = |α1, G〉1|α2, G〉2
• α1√

V1
=

α2√
V2

at equilibirum. If not, finite current.

• Similar results when S = S1 + S2 + S3 + · · · .
¶ ³
〈Ô(x)〉 6= 0やcoherent stateを仮定した議論は、coherent state of interact-
ing bosonsに置き換えれば正しくなる！µ ´



Superconductors — long-range interactions

If we regard a Cooper pair as a boson, a trivial extension of the short-range
case gives (AS, talk presented in 2003)

Evac − EG ≥ µ′
δN2

2V
+ K

δN2

V 1/3
+

o(V )

V
.

Thermodynamics requires

Evac − EG = o(V ) or, more strongly, Evac − EG = O(1)?

Therefore, for large V ,

• |α,G〉 would not be realized in superconductors, because δN2 = O(V ).

• States with δN2 ≤ O(V 1/3) would be realized.

• But, |N,G〉 is macroscopically unstable (for large V ).

Then, what state is realized?



A candidates for a vacuum state for long-range interactions

‘Number-phase squeezed state of interacting bosons’
AS and J. Inoue, PRA 60 (1999) 3204; AS and J. Inoue, JPSJ 71 (2002) 56

|N, ζ,G〉 = constant ×
N∑

M=0

ζ∗(N−M)√
(N − M)!M !

|M,G〉 (N − |ζ|2 = 〈N〉)

If we take |ζ|2 = O(V 1/3) (→ ∞ as V → ∞), then

• Symmery is broken:
∣∣∣〈φ̂(x)〉

∣∣∣ ' √
Z

√
N

V
= O

(√
N/V

)
= O(1).

(Z = O(1), 0 < Z < 1 for interacting bosons)

• (Probably) Cluster property.

• δN2 = |ζ|2.
• For superconductors, EN,ζ,G − EG = O(1).

Therefore ...



When particles can flow between subsystems, ← realistic
the number-phase squeezed state of interacting bosons

would be realized in each of S1 and S2

S1
S2

E

• [size of E] À [size of S].

• One will not measure observ-
ables in E.

• S2 can be (a part of) an appara-
tus for measuring S1.

|ΦS〉S = |N1, ζ1, G〉1|N2, ζ2, G〉2
Similar results when S = S1 + S2 + S3 + · · · .¶ ³
〈Ô(x)〉 6= 0やcoherent stateを仮定した議論は、number-phase squeezed
state of interacting bosonsに置き換えれば正しくなる！µ ´



Different states are realized under different conditions

• Small superconductor

Large energy barrier against changing N

→ ground state with a fixed N is stable and realized

• etc.



So far, so good .... but ....!!!

In inifinite systems, a vacuum is assumed to be time-independent.

In finite systems,

• |N,G〉 : eigenstate of Ĥ → no time evalution if perturbation is absent.

But, discarded because macroscopically unstable.

• |α,G〉 : would be realized because macroscopically stable.

But, not eigenstate of Ĥ → time evolution even if perturbation is absent!

¶ ³
How can |α,G〉 be consistent with

• a vacuum of infinite systems?

• thermodynamics, where the equilibrium state is time-independent?µ ´
AS and T. Miyadera, PRE 64 (2001) 056121



Although tclps would be finite for finite V , it is sufficient that

tclps → ∞ as V → ∞.

However, a naive calculation gives;

|α,G〉 = e−|α|2/2
∞∑

N=0

αN
√

N !
|N,G〉 ⇒ δN = 〈N〉

EN+δN,G − EN,G = µδN + µ′
(δN)2

2V
+ · · ·

⇒ twf
clps ∼ 1/µδN = 1/O(N) → 0???

However, the factor µδN can be absorbed into

α → αe−iµt ⇒ Josephson effect

If interaction were absent, this solves the problem (well known).

However, µ′ > 0 because of interactions, so

twf ′
clps ∼ V/µ′(δN)2 = O(V/N) = O(1).

The wavefunction collapses in such a short time!!



However, this does not necessarily mean that expectation values of observables
of interest alter in this time scale.

For an observable that is proportional to a field operator,

tobs
clps ∼ V/(µ′δN) = O(

√
V ) → ∞.

For an observable that is a polynomial of degree M of field operators,

tobs
clps = O(

√
V /M).

¶ ³
Therefore, if M is independent of V ,

tobs
clps = O(

√
V ) → ∞.

µ ´
Consistent with

• a vacuum of infinite systems.

• thermodynamics, where the equilibrium state is time-independent.



Summary and Conclusions

• By considering the environment, we can associate a pure state and non-
gauge invariant observables to each subsystem.

• A vacuum state of a finite system is not necessarily the ground state.

• The conditions for the vacuum state are

1. Energy is low enough:

Evac − EG = o(V ) or, more strongly, Evac − EG = O(1)?

2. Macroscopic stability (i.e., cluster property).

3. Compatibe with other physical situations of each system.

• Candidates for the realized vacua, for short-range interactions and for long-
range interactions.

• When |vac〉 6= |G〉, the state vector |vac〉 evolves quickly.

• However, if we look only at observables that are low-order polynomials of
field operators, their expactation values evolve slowly enough.


